User Tools

Site Tools


project:lora_nodes

This is an old revision of the document!


LoRa TTN node setup

Osnovni setup za LoRa TTN nodes… za Heltec i TTGO module, al vjerojatno i za druge.

Arduino i podrška za ESP32

Instaliraj Arduino

Instaliraj Arduino podršku za ESP32 mikrokontrolere

The Things Network account

Kreiraj TTN account

Pod TTN Applications registriraj novu aplikaciju (grupa uređaja)

Registriraj novi device.

Example code

Spremi primjer

otaa_abp_example.ino
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include <U8x8lib.h>
 
#define BUILTIN_LED 25
 
// the OLED used
U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ 15, /* data=*/ 4, /* reset=*/ 16);
 
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 20;
 
//#define USE_JOINING
 
#ifdef USE_JOINING
  // OTAA join keys
  // This EUI must be in little-endian format, so least-significant-byte
  // first. When copying an EUI from ttnctl output, this means to reverse
  // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
  // 0x70.
  static const u1_t PROGMEM APPEUI[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
  void os_getArtEui (u1_t* buf) {
    memcpy_P(buf, APPEUI, 8);
  }
 
  // This should also be in little endian format, see above.
  static const u1_t PROGMEM DEVEUI[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
  void os_getDevEui (u1_t* buf) {
    memcpy_P(buf, DEVEUI, 8);
  }
 
  // This key should be in big endian format (or, since it is not really a
  // number but a block of memory, endianness does not really apply). In
  // practice, a key taken from ttnctl can be copied as-is.
  // The key shown here is the semtech default key.
  static const u1_t PROGMEM APPKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
  void os_getDevKey (u1_t* buf) {
    memcpy_P(buf, APPKEY, 16);
  }
 
#else
  // ABP keys
 
  // LoRaWAN NwkSKey, network session key (msb)
  static const PROGMEM u1_t NWKSKEY[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 
  // LoRaWAN AppSKey, application session key (msb)
  static const u1_t PROGMEM APPSKEY[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 
  // LoRaWAN end-device address (DevAddr)
  static const u4_t DEVADDR = 0xffffffff; 
 
  void os_getArtEui (u1_t* buf) { }
  void os_getDevEui (u1_t* buf) { }
  void os_getDevKey (u1_t* buf) { }
 
#endif
 
 
static uint8_t mydata[] = {13, 37};
static osjob_t sendjob;
 
 
// Pin mapping
const lmic_pinmap lmic_pins = {
  .nss = 18,
  .rxtx = LMIC_UNUSED_PIN,
  .rst = 14,
  .dio = {26, 33, 32},
};
 
void onEvent (ev_t ev) {
  Serial.print(os_getTime());
  u8x8.setCursor(0, 5);
  u8x8.printf("TIME %lu", os_getTime());
  Serial.print(": ");
  switch (ev) {
    case EV_SCAN_TIMEOUT:
      Serial.println(F("EV_SCAN_TIMEOUT"));
      u8x8.drawString(0, 7, "EV_SCAN_TIMEOUT");
      break;
    case EV_BEACON_FOUND:
      Serial.println(F("EV_BEACON_FOUND"));
      u8x8.drawString(0, 7, "EV_BEACON_FOUND");
      break;
    case EV_BEACON_MISSED:
      Serial.println(F("EV_BEACON_MISSED"));
      u8x8.drawString(0, 7, "EV_BEACON_MISSED");
      break;
    case EV_BEACON_TRACKED:
      Serial.println(F("EV_BEACON_TRACKED"));
      u8x8.drawString(0, 7, "EV_BEACON_TRACKED");
      break;
    case EV_JOINING:
      Serial.println(F("EV_JOINING"));
      u8x8.drawString(0, 7, "EV_JOINING");
      break;
    case EV_JOINED:
      Serial.println(F("EV_JOINED"));
      u8x8.drawString(0, 7, "EV_JOINED ");
      LMIC_setDrTxpow(DR_SF7, 14); //added fixed SF after join for longer range messages
      // Disable link check validation (automatically enabled
      // during join, but not supported by TTN at this time).
      LMIC_setLinkCheckMode(0);
      break;
    case EV_RFU1:
      Serial.println(F("EV_RFU1"));
      u8x8.drawString(0, 7, "EV_RFUI");
      break;
    case EV_JOIN_FAILED:
      Serial.println(F("EV_JOIN_FAILED"));
      u8x8.drawString(0, 7, "EV_JOIN_FAILED");
      break;
    case EV_REJOIN_FAILED:
      Serial.println(F("EV_REJOIN_FAILED"));
      u8x8.drawString(0, 7, "EV_REJOIN_FAILED");
      //break;
      break;
    case EV_TXCOMPLETE:
      Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
      u8x8.drawString(0, 7, "EV_TXCOMPLETE");
      digitalWrite(BUILTIN_LED, LOW);
      if (LMIC.txrxFlags & TXRX_ACK) {
        Serial.println(F("Received ack"));
        u8x8.drawString(0, 7, "Received ACK");
      }
      if (LMIC.dataLen) {
        Serial.println(F("Received "));
        u8x8.drawString(0, 6, "RX ");
        Serial.println(LMIC.dataLen);
        u8x8.setCursor(4, 6);
        u8x8.printf("%i bytes", LMIC.dataLen);
        Serial.println(F(" bytes of payload"));
        u8x8.setCursor(0, 7);
        u8x8.printf("RSSI %d SNR %.1d", LMIC.rssi, LMIC.snr);
      }
      // Schedule next transmission
      os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send);
      break;
    case EV_LOST_TSYNC:
      Serial.println(F("EV_LOST_TSYNC"));
      u8x8.drawString(0, 7, "EV_LOST_TSYNC");
      break;
    case EV_RESET:
      Serial.println(F("EV_RESET"));
      u8x8.drawString(0, 7, "EV_RESET");
      break;
    case EV_RXCOMPLETE:
      // data received in ping slot
      Serial.println(F("EV_RXCOMPLETE"));
      u8x8.drawString(0, 7, "EV_RXCOMPLETE");
      break;
    case EV_LINK_DEAD:
      Serial.println(F("EV_LINK_DEAD"));
      u8x8.drawString(0, 7, "EV_LINK_DEAD");
      break;
    case EV_LINK_ALIVE:
      Serial.println(F("EV_LINK_ALIVE"));
      u8x8.drawString(0, 7, "EV_LINK_ALIVE");
      break;
    default:
      Serial.println(F("Unknown event"));
      u8x8.setCursor(0, 7);
      u8x8.printf("UNKNOWN EVENT %d", ev);
      break;
  }
}
 
void do_send(osjob_t* j) {
  // Check if there is not a current TX/RX job running
  if (LMIC.opmode & OP_TXRXPEND) {
    Serial.println(F("OP_TXRXPEND, not sending"));
    u8x8.drawString(0, 7, "OP_TXRXPEND, not sent");
  } else {
    // Prepare upstream data transmission at the next possible time.
    LMIC_setTxData2(1, mydata, sizeof(mydata) - 1, 0);
    Serial.println(F("Packet queued"));
    u8x8.drawString(0, 7, "PACKET QUEUED");
    digitalWrite(BUILTIN_LED, HIGH);
  }
  // Next TX is scheduled after TX_COMPLETE event.
}
 
 
void setup() {
 
  Serial.begin(115200);
 
  u8x8.begin();
  u8x8.setFont(u8x8_font_chroma48medium8_r);
  u8x8.drawString(0, 1, "radiona.org");
 
  SPI.begin(5, 19, 27);
 
  // LMIC init
  os_init();
  // Reset the MAC state. Session and pending data transfers will be discarded.
  LMIC_reset();
 
#ifndef USE_JOINING
    #ifdef PROGMEM
      // On AVR, these values are stored in flash and only copied to RAM
      // once. Copy them to a temporary buffer here, LMIC_setSession will
      // copy them into a buffer of its own again.
      uint8_t appskey[sizeof(APPSKEY)];
      uint8_t nwkskey[sizeof(NWKSKEY)];
      memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
      memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
      LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
    #else
      // If not running an AVR with PROGMEM, just use the arrays directly
      LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
    #endif
#endif
 
  // Set up the channels used by the Things Network, which corresponds
  // to the defaults of most gateways. Without this, only three base
  // channels from the LoRaWAN specification are used, which certainly
  // works, so it is good for debugging, but can overload those
  // frequencies, so be sure to configure the full frequency range of
  // your network here (unless your network autoconfigures them).
  // Setting up channels should happen after LMIC_setSession, as that
  // configures the minimal channel set.
  // NA-US channels 0-71 are configured automatically
  LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);      // g-band
  LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
  LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  BAND_MILLI);      // g2-band
  // TTN defines an additional channel at 869.525Mhz using SF9 for class B
  // devices' ping slots. LMIC does not have an easy way to define set this
  // frequency and support for class B is spotty and untested, so this
  // frequency is not configured here.
 
  // Disable link check validation
  //LMIC_setLinkCheckMode(0);
 
  // TTN uses SF9 for its RX2 window.
  //LMIC.dn2Dr = DR_SF9;
 
 
  LMIC_setDrTxpow(DR_SF7, 14); //set join at SF12
 
  pinMode(BUILTIN_LED, OUTPUT);
  digitalWrite(BUILTIN_LED, LOW);
 
  // Start job (sending automatically starts OTAA too)
  do_send(&sendjob);
}
 
void loop() {
  os_runloop_once();
}

Za ABP mode

Za korištenje APB u settinzima devicea na TTNu treba označiti APB te će onda biti prikazani i network session key i app session key (kopiraju se u defaultnom msb formatu), te device id (kopira se direktno kao broj).

Za OTTA mode

OTAA mode (sa joinanjem) se enejbla otkomentiravanjem “#define USE_JOINING”

Kopraj EUI i ključeve s TTN konzole u kod:

  • Device EUI lsb
  • Application EUI lsb
  • App Key msb

Podesi spreading factor i gain

Spreading Factor (SF #). The higher the SF (i.e. the slower the transmission), the longer the communication range. Large SFs allow longer communication range. However, large SFs also increase the time on air and, consequently, the off-period duration.

Gain? (drugi broj).

Promjeni u svim linijama!

  • za stacionarni node npr SF12, 14 (veći domet ali i potencijalno više grešaka)
  • za mapiranje iz vožnje SF7, 16 (u zraku je kratko)

LoRa Modem Packet formatting

Instaliraj librarije koji nedostaju

Sketch / Include Library / Manage Libraries … lmic i U8x8

Upload-aj kod

U Arduino IDE-u pod Tools / Boards izaberi odgovarajuću pločicu (u našem slučaju Heltec_WIFI_Kit_32) i pod Port izaberi port na kojem se nalazi device.

Provjeri primljene poruke u konzoli

TTN mapper

TTN mapper služi za prikaz, analizu i mapiranje TTN LoRa mreže. Sučelje mu je u banani pa je najbolje pristupati direktno s parametrima:

TTN mapper android aplikacija pomoću koje se može upariti telefon s GPS-om i LoRa node, kako bi se moglo testirati i mapirati pokrivenost mreže.

project/lora_nodes.1519809395.txt.gz · Last modified: 2018/02/28 10:16 by dp